Blowing-up solutions of multi-order fractional differential equations with the periodic boundary condition
نویسندگان
چکیده
منابع مشابه
ON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *
The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.
متن کاملFractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions
In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کاملProfile of blowing-up solutions to a nonlinear system of fractional differential equations
We investigate the profile of the blowing up solutions to the nonlinear nonlocal system (FDS) u′(t) + Dα0+(u − u0)(t) = |v(t)|q, t > 0, v′(t) + Dβ0+(v − v0)(t) = |u(t)|p, t > 0, where u(0) = u0 > 0, v(0) = v0 > 0, p > 1, q > 1 are given constants and Dα0+ and Dβ0+ , 0 < α < 1, 0 < β < 1 stand for the Riemann-Liouville fractional derivatives. Our method of proof relies on comparisons of the solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2017
ISSN: 1687-1847
DOI: 10.1186/s13662-017-1180-8